
Published as a conference paper at ICLR 2023

MESHDIFFUSION:
SCORE-BASED GENERATIVE 3D MESH MODELING

Zhen Liu1,2∗, Yao Feng2,3, Michael J. Black2, Derek Nowrouzezahrai4, Liam Paull1, Weiyang Liu2,5

1Mila, Université de Montréal 2Max Planck Institute for Intelligent Systems - Tübingen
3ETH Zürich 4McGill University 5University of Cambridge

Project Page: meshdiffusion.github.io

a rusty chair

a van in cyber punk style a cardboard convertible

a blue bamboo chair

a Delta jet a plane with starry night painting

(a) Unconditionally generated 3D mesh samples from MeshDiffusion (b) Our meshes with text-conditioned textures

Figure 1: (a) Unconditionally generated 3D mesh samples randomly selected from the proposed MeshDiffusion,
a simple diffusion model trained on a direct parametrization of 3D meshes without bells and whistles. (b) 3D
mesh samples generated by MeshDiffusion with text-conditioned textures from [39]. MeshDiffusion produces
highly realistic and fine-grained geometric details while being easy and stable to train.

ABSTRACT

We consider the task of generating realistic 3D shapes, which is useful for a variety
of applications such as automatic scene generation and physical simulation. Com-
pared to other 3D representations like voxels and point clouds, meshes are more
desirable in practice, because (1) they enable easy and arbitrary manipulation of
shapes for relighting and simulation, and (2) they can fully leverage the power of
modern graphics pipelines which are mostly optimized for meshes. Previous scal-
able methods for generating meshes typically rely on sub-optimal post-processing,
and they tend to produce overly-smooth or noisy surfaces without fine-grained
geometric details. To overcome these shortcomings, we take advantage of the
graph structure of meshes and use a simple yet very effective generative modeling
method to generate 3D meshes. Specifically, we represent meshes with deformable
tetrahedral grids, and then train a diffusion model on this direct parametrization.
We demonstrate the effectiveness of our model on multiple generative tasks.

1 INTRODUCTION

As one of the most challenging tasks in computer vision and graphics, generative modeling of
high-quality 3D shapes is of great significance in many applications such as virtual reality and
metaverse [11]. Traditional methods for generative 3D shape modeling are usually built upon repre-
sentations of voxels [51] or point clouds [1], mostly because ground truth data of these representations
are relatively easy to obtain and also convenient to process. Both representations, however, do not
produce fine-level surface geometry and therefore cannot be used for photorealistic rendering of
shapes of different materials in different lighting conditions. And despite being convenient to process

∗Work done partially during an internship at Max Planck Institute for Intelligent Systems.

1

https://meshdiffusion.github.io/

Published as a conference paper at ICLR 2023

for computers, both voxels and point clouds are relatively hard for artists to edit, especially when
the generated 3D shapes are complex and of low quality. Moreover, modern graphics pipelines are
built and optimized for explicit geometry representations like meshes, making meshes one of the
most desirable final 3D shape representations. While it is still possible to use methods like Poisson
reconstruction to obtain surfaces from voxels and points clouds, the resulted surfaces are generally
noisy and contain many topological artifacts, even with carefully tuned hyperparameters.

To improve the representation flexibility, sign distance fields (SDFs) have been adopted to model
shape surfaces, which enables us to use marching cubes [29] to extract the zero-surfaces and thus 3D
meshes. However, SDFs are typically harder to learn as it requires a carefully designed sampling
strategy and regularization. Because SDFs are usually parameterized with multi-layer perceptrons
(MLPs) in which a smoothness prior is implicitly embedded, the generated shapes tend to be so
smooth that sharp edges and important (and potentially semantic) details are lost. Moreover, SDFs
are costly to render and therefore less suitable for downstream tasks like conditional generation with
RGB images, which require an efficient differentiable renderer during inference.

We instead aim to generate 3D shapes by directly producing 3D meshes, where surfaces are repre-
sented as a graph of triangular or polygon faces. With 3D meshes, all local surface information is
completely included in the mesh vertices (along with the vertex connectivity), because the surface
normal of any point on the shape surface is simply a nearest neighbor or some local linear combination
of vertex normals. Such a regular structure with rich geometric details enables us to better model
the data distribution and learn generative models that are more geometry-aware. In light of recent
advances in score-based generative modeling [16, 47] where powerful generative performance and
effortless training are demonstrated, we propose to train diffusion models on these vertices to generate
meshes. However, it is by no means a trivial task and poses two critical problems: (1) the numbers of
vertices and faces are indefinite for general object categories, and (2) the underlying topology varies
wildly and edges have to be generated at the same time.

A natural solution is to enclose meshes with another structure such that the space of mesh topology
and spatial configuration is constrained. One common approach is to discretize the 3D space and
encapsulate each mesh in a tiny cell, and it is proven useful in simulation [37] and human surface
modeling [35]. Observing that this sort of mesh modeling is viable in recent differentiable geometry
modeling literature [32, 38, 43], we propose to train diffusion models on a discretized and uniform
tetrahedral grid structure which parameterizes a small yet representative family of meshes. With
such a grid representation, topological change is subsumed into the SDF values and the inputs to the
diffusion model now assume a fixed and identical size. More importantly, since SDF values are now
independent scalars instead of the outputs of an MLP, the parameterized shapes are no longer biased
towards smooth surfaces. Indeed, by such an explicit probabilistic modeling we introduce an explicit
geometric prior into shape generation, because a score matching loss of diffusion models on the grid
vertices has direct and simple correspondence to the vertex positions of triangular mesh.

We demonstrate that our method, dubbed MeshDiffusion, is able to produce high-quality meshes and
enables conditional generation with a differentiable renderer. MeshDiffusion is also very stable to
train without bells and whistles. We validate the superiority of the visual quality of our generated
samples qualitatively with different rendered views and quantitatively by proxy metrics. We further
conduct ablation studies to show that our design choices are necessary and well suited for the task of
3D mesh generation. Our contributions are summarized below:

• To our knowledge, we are the first to apply diffusion model for unconditionally generating 3D
high-quality meshes and to show that diffusion models are well suited for 3D geometry.

• Taking advantage of the deformable tetrahedral grid parametrization of 3D mesh shapes, we propose
a simple and effortless way to train a diffusion model to generate 3D meshes.

• We qualitatively and quantitatively demonstrate the superiority of MeshDiffusion on different tasks,
including (1) unconditional generation, (2) conditional generation and (3) interpolation.

2 RELATED WORK

3D Shape Generation. 3D shape generation is commonly done by using generative models on voxels
[51] and point clouds [53], due to their simplicity and accessibility. These resulted (often noisy)
voxels or point clouds, however, do not explicitly encode surface information and therefore has to be
processed with surface reconstruction methods in order to be used in applications like relighting and

2

Published as a conference paper at ICLR 2023

simulation. Recent advances in implicit representations [31] lead to a series of generative models on
neural fields [5, 6, 23, 42]. Based on these representations, one can learn 3D shapes directly from 2D
images [5, 6, 42] with differentiable rendering in the generator. Most of these implicit representations,
despite representing shapes in a more photorealistic way, require additional post-processing steps
to extract explicit meshes, and are often more time-consuming to render images. If the underlying
topology is known, one may directly generate the vertices of a mesh [30, 48]. [33] extends this
approach to the topology-varying case with autoregressive models, sequentially generating vertices
and edges, but it is hardly scalable and yields unsatisfactory results on complex geometry. A batch
of concurrent work propose similar solutions to mesh generation, including: GET3D [13] which
uses StyleGAN [19] with a differentiable renderer on tetrahedral grid representations and learns
to generate 3D meshes from 2D RGB images, TetGAN [14] which trains generative adversarial
networks (GANs) on tetrahedral grids and LION [54] which uses a trained Shape-As-Points [36]
network to build meshes from diffusion-model-generated latent point clouds.

Mesh Reconstruction. Reconstructing 3D meshes of generic objects is challenging and often ill-
posed due to its highly complex structures [18, 20, 28, 50, 52]. One often resorts to some non-mesh
intermediate representations that are easy to process, and then transforms them back to meshes
with mesh reconstruction methods. One of the most popular methods is marching cubes [29] which
assumes that a surface is represented by the zero level set of some continuous field, and this continuous
field can be well approximated by linear interpolation of discrete grid points. It is possible to avoid
implicit representations and directly construct meshes. For instance, by assuming the points lie on a
surface, one can build triangular meshes by connecting these points, a process known as Delaunay
triangulation [3, 10, 15, 22]. It is relatively rare because of its strong assumption on data. With
known mesh topology, one can deform a mesh template to fit a given representation. This approach
can be easily used to fit multiview images of shapes with known topology (e.g., human faces) using a
differentiable renderer [25]. It is recently shown that we are able to parametrize meshes of varying
topology [38, 43] and optimize them using differentiable renderers [32], which our work leverages.

Score-based Generative Models. Recent years have witnessed a surge in modeling data distributions
with score-based models [16, 46, 47], which parameterizes the logarithm of the gradient of the
probability, known as the score function, rather than the probability directly. Different from energy-
based models, the often intractable normalization constant can be avoided and therefore training can
be performed by simply matching the score function. It has been shown that, by using multi-scale
models [16], U-Net architectures [41] and denoising score matching [49], score-based models can
perform high-fidelity image generation and inpainting [16, 40, 47].

3 PRELIMINARIES

Deep marching tetrahedra (DMTet) [43] is a method to parametrize and optimize meshes of
arbitrary topology in a differentiable way. The 3D space is discretized with a deformable tetrahedral
grid, in which each vertex possesses a SDF value. The SDF of each 3D position in the space is
computed by marching tetrahedra [12], which assumes SDF values to be barycentric interpolation of
the SDF values of the vertices of the enclosing tetrahedra. More specifically, for a point xq inside
a tetrahedron of vertices x1, x2, x3, x4 with SDF values being s1, s2, s3, s4, we obtain its unique
barycentric coordinate (a1, a2, a3, a4) such that xq=

∑
i aixi (ai∈ [0, 1]). The SDF value sq of xq

is then computed as sq=
∑

i aisi. As a result, if there exists a triangular mesh in the tetrahedron
(i.e., s1, s2, s3, s4 are not of the same sign), then we can know that the triangular mesh is exactly
the zero surface in the tetrahedron. The triangular mesh vertex vp on a tetrahedron edge (va, vb) is
therefore computed by vp=(vasb−vbsa)/(sb−sa). The advantage of using DMTet, compared to
variants of deep marching cubes [26, 38] which rely on the marching cubes algorithm [29], is that
the grids are deformable and thus more capable of capturing some finer geometric details like very
thin handles of chairs. While the cubic grid used for deep marching cubes can be deformable as well,
the deformed cubes are much worse objects to deal with, compared to tetrahedra which will remain
tetrahedra after deformation. Notably, DMTet can be fitted with a differentiable renderer by jointly
optimizing for the geometry, the texture and the lighting of a 3D shape given multi-view RGB images
within a reasonable amount of time and memory budget [32].

Diffusion models are a family of score-based generative models which learn and infer with the
ground-truth time-dependent score function defined by a forward diffusion process [16]. Under the
stochastic differential equation (SDE) framework proposed in [47], diffusion models construct the
probability of each point in a space by diffusing all data points x0 ∈ D to a target distribution at time T

3

Published as a conference paper at ICLR 2023

Tetrahedral grid Cubic grid

Deformable Tetrahedra

Offset coordinates + SDF value

Signed Distance Field

3D Tetrahedra Representation Diffusion Model

Cubic grid

Deformable Tetrahedra

Signed Distance Field

Offset coordinates + SDF value

Forward SDE

Reverse SDE

Generation

Training

Raw Mesh

Differentiable
Rendering

Converting
Representation

Image Space
Rendering

Reconstruction Loss

Figure 2: Overview of the proposed MeshDiffusion model.

(normally pT (xT) = N (xT ; 0, I)) in a time-variant manner: log pt(xt|D) = Ex0∈D[log pt(xt|x0)],
where pt(xt|x0) is modeled by the following Itô process, with w(t) being a standard Wiener process:
dx = F (x, t)dt+G(t)dw, in which F (x, t) and G(t) are some predefined functions. The training
objective is to approximate the score function ∇x log pt(xt|x0) with a neural network denoted by
sθ(xt, t), where λ(t) is a scalar weight subject to the model design:

L(θ;D) = E
t∈[T],x0∈D

λ(t) ∥sθ(xt, t)−∇x log pt(xt|x0)∥22 . (1)

With the trained score function predictor, samples can be generated by solving the reverse SDE [47]
with the initial distribution pT (xT) using solvers like Euler-Maruyama method [21]:

dx =
(
F (x, t)−G2(x)∇x log pt(xt|x0)

)
dt+G(t)dw. (2)

A popular diffusion model DDPM [16], which utilizes a discrete diffusion process p(xt|xt−1) =
N (xt; (1− βt)xt−1, βtI), can be formulated within this SDE framework as [47]: dx = −βtxdt+√
βtdw. The parameters βt are chosen such that pT (xT) is close to a standard Gaussian distribution.

4 MeshDiffusion: DIFFUSION MODEL ON MESHES

With DMTet, 3D meshes can be approximated and parameterized with tetrahedral grids. Moreover,
by initializing the tetrahedral grid using body-centered cubic (BCC) tiling [24] and treating the
deformation of each vertex only as an attribute, we obtain a uniform and almost-regular tetrahedral
grid (with fewer vertex degrees on the boundary) in which 3D translational symmetry is preserved.
Such nice properties enable us to easily train a diffusion model for generating 3D meshes. From
now on, we always assume that the undeformed tetrahedral grid is uniformly initialized and predict
the deformation of tetrahedral grid vertices from their initial positions. As a result, our model takes
as input a uniform tetrahedral grid with 4-dimensional attributes (specifically, 3 dimensions are for
deformation and 1 dimension is for SDF). These structural priors inspire us to use 3D convolutions.

4.1 3D CONVOLUTIONAL NETWORKS FOR DEFORMABLE TETRAHEDRAL GRIDS

While it is natural to use graph neural networks (GNNs) for diffusion models on tetrahedral grids,
we argue that it is better to use convolutional neural networks (CNNs) which generally have better
model capacity and contextual information than GNNs due to the embedded spatial priors in the
convolution operators. Specifically, the set of vertex positions of a uniform tetrahedral grid, created in
the way described in [24], is a subset of the vertex position set of a uniform cubic lattice. A standard
voxel-like representation can then be easily created by infilling the “missing” sites of a tetrahedral
grid (illustrated in Figure 2). We follow the common practices in diffusion models [47] and use a 3D
U-Net for the score function predictor. Detailed architectures and settings are in the appendix.

4.2 TRAINING OBJECTIVE

Since the tetrahedral grid representation of each object in the datasets is not given, our training
objective can be formulated by the following constrained optimization:

min
θ

E
t∈Cat({1,...,T}),y0∈D
xt∼p(xt|x0=gϕ∗ (y0))

λ(t) ∥sθ(xt, t)−∇x log pt(xt|gϕ∗(y0))∥22

s.t. ϕ∗ = argmin
ϕ

LRender
(
y0, gϕ(y0)

)
,

(3)

in which D is the 3D shape dataset, y0 ∼ D is the set of 2D views of an object sampled from D, t is
uniformly sampled from {1, ..., T}, sθ(x, t) is the score function approximator parameterized by a

4

Published as a conference paper at ICLR 2023

Algorithm 1 Training and Inference
Training:

1: Fitting x′ for each y ∈ D, and normalize the SDF
values to ±1, resulting the dataset (x′, y) ∈ D′.

2: Fitting x for each (x′, y) ∈ D′ by conditioning the
SDF values on those of x′.

3: Train a diffusion model sθ(x, t) on D′ by treating
the normalized SDF values as float numbers.
Inference:

1: Obtain x0 by solving the reverse SDE with initial
distribution q(xT) and normalize the SDF values
of x0 to ±1.

2: (Optionally) Regenerate x0 by conditioning on the
previously generated (and normalized) SDF values.

Algorithm 2 Conditional Generation

1: Randomly initialize and fit a deformable tetrahedral
grid using the given RGBD view.

2: Using rasterization, find all occluded tetrahedra of
which we mask all tetrahedral vertices.

3: Re-initialize the masked tetrahedral vertices and run
the completion algorithm using the trained diffusion
model.

4: (Optionally) Finetune the unmasked tetrahedral ver-
tices as well near the end of the completion process.

neural network θ, gϕ(y0) is the mapping from 2D views of y0 to its tetrahedral grid representation
and LRender is the rendering (and relevant regularization) loss used in [32].

While in theory it is possible to train gϕ such that sθ can be better learned, we instead take the
simplest two-stage and non-amortized approach as detailed optimization and encoder architecture
design to use is beyond our scope. Specifically, we first solve for the constraint LRender and create a
dataset Dx of tetrahedral grids by fitting a tetrahedral grid x0 for each y0 ∼ D in a non-amortized
way. The second stage is simply to optimize for the main objective, i.e., a L2 denoising loss of the
diffusion model, on this generated dataset Dx. Despite simplicity, we find that this simple procedure
is very stable and yields reasonably good performance.

In principle, the first data fitting stage can be trained with multiview RGB images by following the
procedure in [32]. However, we notice that with RGB images only, it fails to learn some complex
geometries, especially when surface materials are highly specular. To demonstrate our idea while
not delving too deep into the rendering details, we instead assume that we have access to 3D mesh
datasets (in our experiments, ShapeNet datasets [7]) so that RGBD images can be rendered with
random lighting and simple surface materials. More specifically, we use a single default material
with diffuse components only for all ground truth meshes, and render multiview RGBD images with
some known but randomly rotated environment light (represented as a cubemap [44]). With the
additional depth information, our reconstruction objective is LRender = αimageLimage + αdepthLdepth +
αchamferLchamfer + αpenaltyLpenalty, in which Limage and Ldepth are the image loss (RGB and silhouette)
and the depth loss between the rendered views and the ground truth views, respectively; Lchamfer is
the Chamfer distance [1] between a sampled point cloud from the predicted mesh and one from the
ground truth mesh; Lpenalty is the regularization terms to move reconstructed meshes out from bad
local minima. Details of these losses are included in the appendix.

In order to remove absolute scales from SDFs (Section 4.3), we perform the optimization twice,
where during the second pass we fix the SDFs to be the signs (i.e., ±1) of the resulted SDF values
from the first pass. This can effectively improve the results.

4.3 REDUCING NOISE EFFECT OF MARCHING TETRAHEDRA

It is tempting to train diffusion models on arbitrary Dx, the dataset of fitted tetrahedral grids of objects,
with low LRender. However, the naively trained models generate highly non-smooth surfaces (Figure 3)
due to a mismatch between the L2 denoising objective on the 4-dimensional inputs (deformation
and SDF) and the ideal L2 reconstruction objective on triangular mesh vertex positions. Recall that
the triangular mesh vertex position vp on a single tetrahedron edge e = (a, b) is computed by linear
interpolation vp = (vasb − vbsa)/(sb − sa), in which va, vb are the positions of tetrahedron vertices
a and b, and sa, sb are the corresponding SDF values. With perfectly fitted va and vb but a small noise
ϵ on both sa and sb, the triangular mesh vertex is subject to a perturbation inversely proportional
to sb − sa, which may incur unexpected consequences: vp,noisy − vp = ϵ(va − vb)/(sb − sa). An
arbitrarily fitted dataset Dx does not provide any guarantee on the scale of |sb − sa| across different
locations in different data points. Such a behavior under the simplified assumption implies that the
error in predicted mesh vertex positions can vary a lot even with the same L2 denoising loss in SDFs
and deformation, indicating unevenly weighted training and inference in the view of mesh vertices.

5

Published as a conference paper at ICLR 2023

IM-GAN SDF StyleGAN MeshDiffusion (ours)

C
ha

ir
C

ar
A

irp
la

ne
Ta

bl
e

R
ifl

e

Figure 4: Qualitative comparison among different generative models. All the samples are randomly selected.

A similar issue arises when we consider the topological changes due to a small noise in the SDF
values. For illustration, we consider the case where some tetrahedral vertex sa with −C < sa < 0
(C ≪ 1 is a tiny positive scalar), and all its neighboring vertices possess SDF value of 1. As a result,
with a small noise on sa, the probability of a local topological change (e.g., an undesirable hole) in
the resulted 3D meshes can differ a lot even when the L2 denoising loss is the same.

Due to these undesired behaviors, we propose to normalize the SDF values and adopt the two-pass
optimization scheme described in Section 4.2, such that we can ensure sa, sb ∈ {+1,−1} and
|sb − sa| = 2 for all mesh-generating tetrahedron edges.

Figure 3: Undesirable artifacts
produced by naïve DDPM due
to the sensitivity of marching
tetrahedra to SDF noises. Better
viewed by zooming in.

With normalized SDFs values and continuous deformation vectors, it
is natural train a hybrid diffusion model in which the SDFs are mod-
eled like in D3PM [2] since normalized SDFs take discrete values
of ±1. However, we empirically find that it suffices to simply treat
the normalized SDFs as float numbers and train a standard Gaussian
diffusion model. The inference thus requires a final normalization
operation to round SDFs to ±1 according to their signs.

Because the generative model is trained under the assumption that
SDF values are un-normalized, a further refinement step can be
applied to improve visual quality. Specifically, we simply set the generated and normalized SDFs as
the conditional inputs and then run a conditional generation step on the deformation vectors only.

4.4 CONDITIONAL GENERATION WITH SINGLE-VIEW IMAGES

In many cases, we would like to generate 3D objects given a (possibly partial) single view RGBD
image. Such a task is simple with MeshDiffusion by a two-stage process: first to fit a tetrahedral grid
with the given single RGBD view and second to use our MeshDiffusion model to (stochastically)
correct the wrong parts. We follow the procedure shown in Algorithm 2. For the conditional inference
process, we consider the simplest conditional generation method [16] (also called replacement method
in [17]). Specifically, we sample x̂t−1 from xt and replace x̂b

t−1 by pt−1(x
b
t−1|xa

0) which is defined
by the forward diffusion. More details are included in the appendix.

5 EXPERIMENTS AND RESULTS

5.1 GENERAL SETTINGS

Data Fitting. We fit tetrahedral grids on five ShapeNet subcategories: Chair, Airplane, Car, Rifle and
Table, the same set of categories used in [9, 55]. Fitting each object takes roughly 20-30 minutes on a
single Quadro RTX 6000 GPU. We use the same train/test split in [55]. The detailed architecture,
training and hyperparameter settings are explained in the appendix.

6

Published as a conference paper at ICLR 2023

Method
MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

JSD (10−3, ↓)
CD EMD LFD CD EMD LFD CD EMD LFD

Chair

IM-GAN 13.928 1.816 3615 49.64 41.96 47.79 58.59 69.05 68.58 6.298
SDF-StyleGAN 15.763 1.839 3730 45.60 45.50 43.95 63.25 67.80 67.66 6.846
GET3D 15.972 1.843 3801 43.36 42.77 44.48 75.26 72.49 82.82 4.732
MeshDiffusion 13.212 1.731 3472 46.00 46.71 42.11 53.69 57.63 63.02 5.038

Car

IM-GAN 5.209 1.197 2645 28.26 24.92 30.73 95.69 94.79 89.30 42.586
SDF StyleGAN 5.064 1.152 2623 29.93 32.06 41.93 88.34 88.31 84.13 15.960
GET3D 6.243 1.252 2657 15.04 18.38 31.13 75.26 72.49 89.07 69.107
MeshDiffusion 4.972 1.196 2477 34.07 25.85 37.53 81.43 87.84 70.83 12.384

Airplane
IM-GAN 3.736 1.110 4939 44.25 37.08 45.86 79.48 82.94 79.11 21.151
SDF StyleGAN 4.558 1.180 5326 40.67 32.63 38.20 85.48 87.08 84.73 26.304
MeshDiffusion 3.612 1.042 4538 47.34 42.15 45.36 66.44 76.26 67.24 11.366

Rifle
IM-GAN 3.550 1.058 6240 46.53 37.89 42.32 70.00 72.74 69.26 25.704
SDF StyleGAN 4.100 1.069 6475 46.53 40.21 41.47 73.68 73.16 76.84 33.624
MeshDiffusion 3.124 1.018 5951 52.63 42.11 48.84 57.68 67.79 55.58 19.353

Table
IM-GAN 11.378 1.567 3400 51.04 49.20 51.04 65.96 63.17 62.49 4.865
SDF StyleGAN 13.896 1.615 3423 42.21 41.80 42.98 68.35 68.21 66.19 4.603
MeshDiffusion 11.405 1.548 3427 49.56 50.33 51.92 59.35 59.47 58.97 4.310

Table 1: Shape metrics of our model and baseline models.

Generative Model. To show the effectiveness and universality of our approach of training diffusion
models on 3D meshes, for the U-Net architecture we take an extremely approach by simply replacing
the 2D convolution and other 2D modules in the U-Net architecture used by [47] with their 3D
counterparts. To improve model capacity, we provide to the model as a conditional input a mask
indicating which lattice sites are artificially introduced. We slightly increase the depth of the network
due to the larger input size. We do not tune the hyperparameters of diffusion SDEs but instead use
the same set of hyperparameters as described in [47], which also validates our MeshDiffusion is easy
to train. We train the discrete-time category-specific diffusion models for all datasets for total 90k
iterations with batch size 48 on 8 A100-80GB GPUs. The training process typically takes 2 to 3 days.

For ablation on alternative architectures, we train GANs on our datasets with an architecture similar
to the one used in [51]. Our SDF-based baselines include IM-GAN [9] and SDF-StyleGAN [55]. We
also compare MeshDiffusion against GET3D [13] which also uses DMTet for mesh parametrization.

5.2 UNCONDITIONAL GENERATION

For qualitative comparison, we randomly sample 3D shapes from each of the trained generative
models for each dataset. We remove isolated meshes of tiny sizes and then apply both remeshing
and the standard Laplace smoothing [34] on all the generated meshes (smoothed with λ = 0.25 and
5 optimization steps). We visualize samples produced by MeshDiffusion and the existing state-of-
the-art 3D mesh generative models in Figure 4. We note that MeshDiffusion produces the sharpest
samples and preserve the finest geometric details, while pure SDF-based methods tend to be too
smooth. Part of the reason is that these SDF-based methods assume a very smooth interpolation
between points, while MeshDiffusion explicitly models the interpolation in a piecewise linear way.

5.2.1 QUANTITATIVE EVALUATION

Model Chair Airplane Car Rifle Table

IM-GAN [9] 64.19 74.57 141.2 103.3 51.70
SDF-StyleGAN [55] 36.48 65.77 128.70 65.50 42.29
MeshDiffusion 39.62 64.30 130.20 54.73 48.55

Table 2: FID scores averaged across 24 views.

In Table 1, we show various point cloud distances [1,
55] and light field distance (LFD) [8] between the
test set and the generated samples by sampling point
clouds of size 2048 from both ground truth and gen-
erated meshes. The results consistently show that
MeshDiffusion can better capture the geometric de-
tails, and therefore achieves better point cloud metrics in most of the cases. For a more detailed
description on the metrics and experimental settings, please refer to the appendix.

We also follow [55] and measure Frechet inception distances (FIDs) [4] on rendered views as a proxy
of goodness of surfaces. Same as in [55], the views are rendered with 24 camera poses uniformly
distributed on a sphere; 3 fixed point light sources are used to light the meshes; a gray diffuse material
is used for all meshes. The FID score of each view is computed with an ImageNet-pretrained model

7

Published as a conference paper at ICLR 2023

Method
MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

JSD (10−3, ↓)
CD EMD LFD CD EMD LFD CD EMD LFD

GAN on Tets 16.116 1.537 4173 45.13 46.39 41.74 72.97 72.57 85.91 5.353
MeshDiffusion 13.212 1.731 3472 46.00 46.71 42.11 53.69 57.63 63.02 5.038
Ours w/o Smoothing 13.885 1.772 3446 43.36 45.50 43.36 60.88 62.54 62.32 4.716
Ours w/o Normalization 14.324 1.816 3690 44.76 46.61 44.69 63.94 65.01 65.34 5.178

Table 3: Ablation study of MeshDiffusion on the Chair category in ShapeNet.

and averaged to obtain the FID scores for 3D shapes. With suitable hyperparameters for resolution
and Laplacian smoothing, our MeshDiffusion is able to achieve competitive scores compared to
SDF-StyleGAN. We note, however, the computed FID is not a genuine score for 3D shapes since the
distribution of rendered views of these meshes is very different from the distribution of natural RGB
images. In addition, the multiview FID score used by SDF-StyleGAN [55] assumes flat shading,
while it is more natural and common to use other shading methods like Phone shading for smoother
images. Results in Table 2 show that even with such a over-simplified shading, MeshDiffusion still
yields very competitive FID scores compared to recent state-of-the-art methods.

Additionally, we perform ablation study on the choices of models in Table 3. It can be observed that
the our SDF normalization strategy described in Section 4.3 is indeed beneficial for the diffusion
model, and our customized diffusion model is better suited for our mesh generation setting.

5.3 CONDITIONAL GENERATION

Ground Truth Given View

Single-view Fitting Completion Results

View 1 View 2

View 1 View 2

View 2

View 1

View 1

View 1

View 2

View 1

Figure 5: Conditional generation on a single RGBD view.

Our model can generate meshes by condi-
tioning on a single-view RGBD image, as
shown in Figure 5. Because the geometry
estimated from the single-view fitting is
not perfect even in the given single view,
we allow the originally-fixed tetrahedral
vertices to be slightly updated by the dif-
fusion model near the end of the diffusion
completion process (in our experiments,
T = 50; the inference process starts at
T = 1000 and ends at T = 0). Results
demonstrate that MeshDiffusion can gen-
erate plausible and reasonable completion
results conditioned on the given view.

5.4 INTERPOLATION RESULTS

We use DDIM [45] to convert the stochastic sampling process into a deterministic one. With DDIM,
the initial random Gaussian noise xT is treated as the “latent code” of the generated image, and we
run the following sampling process: xt−1 = αt−1

αt
[xt − (1 − αt)sθ(xt, t)] + (1 − αt−1)sθ(xt, t).

Following the settings in DDIM paper [45], we use spherical interpolation for the latent codes. We
visualize some of the interpolation sequences in Figure 7. We set the number of inference steps to
100 for faster inference and use quadratic time spacing as described in [45].

5.5 TEXT-CONDITIONED TEXTURE GENERATION

We show in Figure 1 and Figure 6 that the 3D meshes generated by MeshDiffusion can be easily
painted with some texture generation methods. In our experiment, we use a recent work – TEX-
Ture [39] to generate text-conditioned textures on generated raw 3D meshes. As can be observed
from the results, MeshDiffusion along with TEXTure can produce fairly realistic and reasonable
textured 3D mesh models. With more advanced texture generation methods, we believe that the
advantage of MeshDiffusion’s high-quality 3D geometry can be better demonstrated.

6 DISCUSSIONS

Optimization issues with DMTet. While DMTet is capable of fitting geometries, it fails in cases
where the underlying topology is complex. Besides, it is not encouraged to learn the true topology of

8

Published as a conference paper at ICLR 2023

A sofa with an anime character

A WWI style British plane

A cyberpunk style vanA blue and purple leather swivel chair A medical vehicle

A StarWars jet a car in german tank style A photo of a car in lego bricks

Figure 6: More examples of text-conditioned textures synthesized by [39] on our generated meshes.

shapes and may produce invisible topological holes by contracting the neighboring triangular mesh
vertices close enough. Furthermore, we observe that the optimization process with differentiable ras-
terization of 3D meshes may produce floating and isolated meshes, especially when depth supervision
is introduced. It is therefore worth designing better optimization techniques, regularization methods
and possibly better parametrization of meshes for the purpose of training mesh diffusion models.

interpolation

Figure 7: Some examples of our interpolation results.

Diffusion model design. Our experiments
demonstrate the effectiveness of the sim-
ple design with few hyperparameter and
architecture changes: a 3D-CNN-based U-
Net on augmented cubic grids with DDPM.
We note that it is straightforward to utilize
advanced diffusion models and switch to
more memory-efficient architectures. Es-
pecially, since it is possible to regularize
SDFs with methods such as Lipschitz con-
straints [27], it is a promising approach to
train diffusion models on the latent space
produced by a regularized autoencoder, the
same strategy adopted in [40, 54].

Limitations. Diffusion model typically as-
sumes a known dataset in the input modal-
ity (augmented tetrahedral grids in our
case), but to efficiently train diffusion mod-
els on 2D images, we need a better way to
amortize the costs and fully leverage the
power of differentiable rendering. Our paper avoids this important aspect but instead adopts the two-
stage approach of "reconstruction-then-generation". Moreover, in our formulation, the differentiable
renderer is useful only during the tetrahedral grid creation process, while in principle we believe
there can be ways to incorporate the differentiable render in the training and inference process of
diffusion models. Finally, our diffusion model is built with a very naïve architecture, thus limiting
the resolution of input tetrahedral grids, while we notice that some of the fine details cannot be fully
captured with the current resolution of 64 during the dataset creation stage. With better architecture
designs or adaptive resolution techniques (as in [43]), we may greatly increase the resolution and
generate a more diverse set of fine-level geometric details.

7 CONCLUDING REMARKS

We demonstrate that our MeshDiffusion, a diffusion model on 3D meshes parameterized by tetrahedral
grids, is able to generate fine-details of 3D shapes with arbitrary topology. Such a model is minimally
designed but still outperforms the baselines. We demonstrate that, despite being trained and perform-
ing inference in the 3D space, can be easily used when only 2.5D information is available. We believe
that our model can potentially shed some light on future studies of score-based models for learning
and generating high-fidelity shapes. Future work may include but not limited to text-conditioned
mesh generation with diffusion models, joint synthesis of texture and geometry with more realistic
materials, and motion synthesis and physical simulation on generated meshes.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

We thank Yuliang Xiu, Jinlong Yang, Tim Xiao, Haiwen Feng, Yandong Wen for constructive
suggestions. We would like to thank Samsung Electronics Co., Ldt. for funding this research.

Disclosure. MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and
Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH.
While MJB is a part-time employee of Meshcapade, his research was performed solely at, and funded
solely by, the Max Planck Society. DN is supported by NSERC Discovery Grant (RGPIN-5011360)
and LP is supported by NSERC Discovery Grant (RGPIN-04653).

Ethics Statement. Our model is developed for general 3D mesh generation and is in a very
preliminary stage in terms of automatically generating product-quality meshes. Still, our model may
potentially be used to generate inappropriate contents if trained on specific datasets.

REFERENCES

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and
generative models for 3d point clouds. In ICML, 2018.

[2] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In NeurIPS, 2021.

[3] Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape representation. ACM Transac-
tions on Graphics, 3(4):266–286, 1984.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. In ICLR, 2018.

[5] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d generative
adversarial networks. In CVPR, 2022.

[6] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic implicit
generative adversarial networks for 3d-aware image synthesis. In CVPR, 2021.

[7] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[8] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity based 3d model
retrieval. In Computer graphics forum, volume 22, pages 223–232. Wiley Online Library, 2003.

[9] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In CVPR, 2019.

[10] Tamal K Dey, Joachim Giesen, and James Hudson. Delaunay based shape reconstruction from large data.
In PVG, 2001.

[11] John David N Dionisio, William G Burns III, and Richard Gilbert. 3d virtual worlds and the metaverse:
Current status and future possibilities. ACM Computing Surveys, 45(3):1–38, 2013.

[12] Akio Doi and Akio Koide. An efficient method of triangulating equi-valued surfaces by using tetrahedral
cells. IEICE Transactions on Information and Systems, 74(1):214–224, 1991.

[13] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic,
and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned from images. In
NeurIPS, 2022.

[14] William Gao, April Wang, Gal Metzer, Raymond A Yeh, and Rana Hanocka. Tetgan: A convolutional
neural network for tetrahedral mesh generation. arXiv preprint arXiv:2210.05735, 2022.

[15] Meenakshisundaram Gopi, Shankar Krishnan, and Cláudio T Silva. Surface reconstruction based on lower
dimensional localized delaunay triangulation. In Computer Graphics Forum, volume 19, pages 467–478,
2000.

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS, 2020.

10

Published as a conference paper at ICLR 2023

[17] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

[18] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Learning category-specific
mesh reconstruction from image collections. In ECCV, 2018.

[19] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. In NeurIPS, 2020.

[20] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In CVPR, 2018.

[21] P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer Berlin
Heidelberg, 2011.

[22] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and James F O’Brien. Spectral surface reconstruction
from noisy point clouds. In SGP, 2004.

[23] Adam R Kosiorek, Heiko Strathmann, Daniel Zoran, Pol Moreno, Rosalia Schneider, Sona Mokrá, and
Danilo Jimenez Rezende. Nerf-vae: A geometry aware 3d scene generative model. In ICML, 2021.

[24] François Labelle and Jonathan Richard Shewchuk. Isosurface stuffing: fast tetrahedral meshes with good
dihedral angles. In SIGGRAPH, 2007.

[25] Tianye Li, Shichen Liu, Timo Bolkart, Jiayi Liu, Hao Li, and Yajie Zhao. Topologically consistent
multi-view face inference using volumetric sampling. In ICCV, 2021.

[26] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning explicit surface representa-
tions. In CVPR, 2018.

[27] Hsueh-Ti Derek Liu, Francis Williams, Alec Jacobson, Sanja Fidler, and Or Litany. Learning smooth
neural functions via lipschitz regularization. In SIGGRAPH, 2022.

[28] Weiyang Liu, Zhen Liu, Liam Paull, Adrian Weller, and Bernhard Schölkopf. Structural causal 3d
reconstruction. In ECCV, 2022.

[29] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In SIGGRAPH, 1987.

[30] Qianli Ma, Jinlong Yang, Anurag Ranjan, Sergi Pujades, Gerard Pons-Moll, Siyu Tang, and Michael J
Black. Learning to dress 3d people in generative clothing. In CVPR, 2020.

[31] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[32] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas
Mueller, and Sanja Fidler. Extracting Triangular 3D Models, Materials, and Lighting From Images.
arXiv:2111.12503, 2021.

[33] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. Polygen: An autoregressive generative
model of 3d meshes. In ICML, 2020.

[34] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian mesh optimization. In
Proceedings of the 4th international conference on Computer graphics and interactive techniques in
Australasia and Southeast Asia, 2006.

[35] Hayato Onizuka, Zehra Hayirci, Diego Thomas, Akihiro Sugimoto, Hideaki Uchiyama, and Rin-ichiro
Taniguchi. Tetratsdf: 3d human reconstruction from a single image with a tetrahedral outer shell. In CVPR,
2020.

[36] Songyou Peng, Chiyu "Max" Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas Geiger.
Shape as points: A differentiable poisson solver. In NeurIPS, 2021.

[37] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In ICLR, 2020.

[38] Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoît Guillard, Timur Bagautdinov, Pierre Baque,
and Pascal Fua. Meshsdf: Differentiable iso-surface extraction. In NeurIPS, 2020.

[39] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. Texture: Text-guided
texturing of 3d shapes. arXiv preprint arXiv:2302.01721, 2023.

11

Published as a conference paper at ICLR 2023

[40] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In CVPR, 2022.

[41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI, 2015.

[42] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields for
3d-aware image synthesis. In NeurIPS, 2020.

[43] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra: a
hybrid representation for high-resolution 3d shape synthesis. In NeurIPS, 2021.

[44] Peter Shirley, Michael Ashikhmin, and Steve Marschner. Fundamentals of computer graphics. AK
Peters/CRC Press, 2009.

[45] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR, 2021.

[46] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach to
density and score estimation. In UAI, 2020.

[47] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In ICLR, 2021.

[48] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Variational autoencoders for deforming 3d mesh
models. In CVPR, 2018.

[49] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation,
23(7):1661–1674, 2011.

[50] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In ECCV, 2018.

[51] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. In NIPS, 2016.

[52] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised learning of probably symmetric
deformable 3d objects from images in the wild. In CVPR, 2020.

[53] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan. Pointflow:
3d point cloud generation with continuous normalizing flows. In ICCV, 2019.

[54] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten Kreis.
Lion: Latent point diffusion models for 3d shape generation. In NeurIPS, 2022.

[55] Xin-Yang Zheng, Yang Liu, Peng-Shuai Wang, and Xin Tong. Sdf-stylegan: Implicit sdf-based stylegan
for 3d shape generation. In SGP, 2022.

12

Published as a conference paper at ICLR 2023

Appendix

Table of Contents
A Details on Dataset Preparation 14

A.1 Architecture and Losses . 14
A.2 Implmentation Details . 15

B Details on Mesh Diffusion Models 16

C Quantitative Metrics for 3D Meshes 17

D Generation Sequence 18

E Nearest Neighbor Visualization 19

F Qualitative Comparison to GET3D 20

G Inner Structure Generation 21

H More Unconditional Generation Samples 22

13

Published as a conference paper at ICLR 2023

A DETAILS ON DATASET PREPARATION

A.1 ARCHITECTURE AND LOSSES

RGB and silhouette loss. By interpolating between a black background image and the binary mask
(produced by rasterization to indicate the existence of rasterized meshes on each pixel), we obtain a
smoothed binary mask M and Mgt, for the fitted meshes and predicted meshes respectively. We then
compute the silhouette loss:

Lsilhouette = ∥M −Mgt∥22 .

We compute the averaged pixel-wise log-L1 loss between rendered images and ground truth images:

LRGB = E
x∈D,Q∈Dpose

log(∥Igt ⊙Mgt − Render(x,Q)⊙M∥)

in which Dpose is the set of random camera poses which always look at the center of the object, and x
is the sampled tetrahedral grid from the dataset D.

Depth loss. We use a mixed loss for depth: when the depth is greater than a threshold (set to 1.0), we
use a L2 loss; otherwise, we switch to L1 loss as we find it producing much better surfaces.

Ldepth = E
x∈D,Q∈Dpose

∥dgt − Renderdepth(x,Q)∥mixed .

The depth images are computed by barycentric interpolation following rasterization, in which the
background is assumed to have a large default depth of 20, which is much greater than the object
depth (constrained in [−1, 1]).

To better remove inner artifacts and generate inner structures, we also include the depth loss on the
second layer from rasterization, i.e., the second triangular mesh (if any) intersected by each view ray.
We weight this second layer depth loss term by 0.1 as we observe that it can interfere with the first
layer depth loss.

The complete depth loss term is thus

Ldepth, complete = E
x∈D,Q∈Dpose

[
∥dgt − Renderdepth(x,Q)∥mixed+0.1∗∥dgt, 2nd − Renderdepth,2nd(x,Q)∥mixed

]
.

Chamfer loss. At every iteration, we randomly sample 50, 000 points from both ground truth meshes
and predicted meshes and compute the standard Chamfer distance:

LChamfer =
∑

x∈Pfitted

min
y∈Pgt

∥x− y∥22 +
∑
y∈Pgt

min
x∈Pfitted

∥x− y∥22 .

SDF regularization loss. Following [32], we use the same L2 regularization loss and penalize
the difference of SDFs of two neighboring tetrahedral vertices (i.e., Etet the set of all edges in the
tetrahedral grid) as in [32] so that the occluded regions do not produce complex inner geometry. It is
also helpful for optimizing tetrahedral grids.

LSDF =
∑

(u,v)∈Etet

∥SDF(u)− SDF(v)∥2 .

Hyperparameter setting. We set αimage = αChamfer = 1.0 and αdepth = 100.0. We set αSDF to 0.2
and use a linear decay of the scale towards 0.01. We use an Adam optimizer for all the parameters
with a learning rate of 5e− 4 and (β1, β2) = (0.9, 0.999). We train both reconstruction passes with
5000 iterations.

14

Published as a conference paper at ICLR 2023

A.2 IMPLMENTATION DETAILS

The initial tetrahedral grid is initialized in a cube [−1, 1]3 by a dense body-centered cubic (BCC)
tiling of tetrahedra [24] (see https://github.com/crawforddoran/quartet for code
examples). As some tetrahedral generation packages produce additional tetrahedral vertices on the
boundary of the cube which breaks translational symmetry (hence detrimental to the performance of
3D CNN), we remove such symmetry-breaking boundaries if any.

We find that using the clipped deformation vectors is better than using the tanh-ed deformation
vectors as they remove some nonlinearity. And to ensure that the deformation vectors are always
differentiable, we clip the deformation vectors only after each gradient update, but not during the
forward computational pass.

We set the range of deformation to be three times of that used in [43] so that the meshes can better
capture details in the absence of SDF scales (Section 4.3), especially when the grid resolution is
low. As self-intersecting meshes may appear, it is necessary to perform standard mesh processing
operations including remeshing and Laplacian smoothing. For grids of higher resolution (e.g., 128),
we instead set the deformation to be 1.5x of hat used in [43].

Because we normalize SDFs after the first reconstruction pass, it is more desirable for the underlying
shape to be captured mostly by the topology implied by SDF values, not the vertex deformation. To
encourage convergence to such solutions, during the first 2000 iterations, we periodically scale the
learned SDF values by 0.4 for every 300 iterations.

We observe that depth supervision is not enough to remove some isolated floater meshes in the space.
Therefore, we cull these floaters by setting the SDF values of all tetrahedral vertices lying outside the
visual hull to positive values (with the assumption that positive values represent ouside-ness). Due to
constraints on computational resources, we do not perform culling in a full 3D way, but use rendered
shape silhouette to determine floaters visible in the rendered views only.

We notice that some of the meshes in ShapeNet are not watertight while some others have parts which
are very thin. Depth supervision on these parts can lead to more topological holes. Therefore, during
rasterization we extract the depths (stored in Z-buffers) of the two closet meshes for each pixel and
decide if we compute the depth loss on these pixels according to the difference in depth of these two
meshes. Specially, depth supervision is not included if the difference is too small or there is only one
rasterized mesh (meaning that the ray only intersects with a single mesh).

Motivated by the fact that only SDFs of the mesh-generating tetrahedra (i.e., tetrahedra with vertices
of different SDF signs) matter, we set the SDFs of all the non-mesh-generating tetrahedral vertices to
±1 (signs depending on if vertices inside/outside the shape) to reduce the complexity of the dataset.

For the single-view reconstruction stage in the conditional generation experiments, we observe that
the lack of other views leads to many floating artifacts when the target shape consists of a bulk
volume. Therefore, during the first 300 iterations, we periodically (every 10 iterations) query the
nearest neighbor ground truth mesh vertices for every tetrahedral vertex, and determine if the vertex
is in front of the camera and not behind the current view (by computing the nearest surface normal,
the displacement from the nearest face center and the view direction from camera). If the tetrahedral
vertex satisfies the condition, we set its SDF value to +1.

15

https://github.com/crawforddoran/quartet

Published as a conference paper at ICLR 2023

B DETAILS ON MESH DIFFUSION MODELS

Input
Encoder

2 × ResBlocks, 3 × 3 kernel, width 64
Pooling, Stride 2

3 × ResBlocks, 3 × 3 kernel, width 64
Pooling, Stride 2

3 × ResBlocks (with one attention layer in between),
3 × 3 kernel, width 128

Pooling, Stride 2
3 × ResBlocks, 3 × 3 kernel, width 256

Pooling, Stride 2
3 × ResBlocks, 3 × 3 kernel, width 256

FC
1 × ResBlocks, 3 × 3 kernel, width 256

Attention
1 × ResBlocks, 3 × 3 kernel, width 256

Decoder
3 × ResBlocks, 3 × 3 kernel, width 256

Upsampling, Stride 2
3 × ResBlocks, 3 × 3 kernel, width 256

Upsampling, Stride 2
3 × ResBlocks (with one attention layer in between),

3 × 3 kernel, width 128
Upsampling, Stride 2

3 × ResBlocks, 3 × 3 kernel, width 64
Upsampling, Stride 2

2 × ResBlocks, 3 × 3 kernel, width 64

Input
Encoder

2 × ResBlocks, 5 × 5 kernel, width 128
Pooling, Stride 2

2 × ResBlocks, 3 × 3 kernel, width 128
Pooling, Stride 2

2 × ResBlocks, 3 × 3 kernel, width 256
Pooling, Stride 2

2 × ResBlocks (with one attention layer in between),
3 × 3 kernel, width 256

Pooling, Stride 2
2 × ResBlocks, 3 × 3 kernel, width 512

Pooling, Stride 2
2 × ResBlocks, 3 × 3 kernel, width 512

FC
1 × ResBlocks, 3 × 3 kernel, width 512

Attention
1 × ResBlocks, 3 × 3 kernel, width 512

Decoder
2 × ResBlocks, 3 × 3 kernel, width 512

Upsampling, Stride 2
2 × ResBlocks, 3 × 3 kernel, width 512

Upsampling, Stride 2
2 × ResBlocks (with one attention layer in between),

3 × 3 kernel, width 256
Upsampling, Stride 2

2 × ResBlocks, 3 × 3 kernel, width 256
Upsampling, Stride 2

2 × ResBlocks, 3 × 3 kernel, width 128
Upsampling, Stride 2

2 × ResBlocks, 5 × 5 kernel, width 128

Table 4: Architecture of the 3D U-Net (Left: resolution 64, Right: resolution 128). The shortcuts from the
encoder to the decoder are not shown.

We adapt the network of DDPM in [16] and use a base width of 64. The encoder in the U-Net is
shown in Table 4, and the decoder follows the same but reverse pattern. For higher resolution grids,
we slightly reduce the number of layers in each resolution stage but double the base width.

All the values at the artificially-introduced sites of a cubic lattice are set to zero. We append to the
cubic grid in the first and last few layers a binary mask that indicates which vertices are from the
tetrahedral grid and which are fake. The score matching loss is also masked accordingly so that the
augmented vertices in the predicted cubic grids do not contribute.

To prevent overfitting, we augment the dataset by randomly translate all tetrahedron vertices by the
same but tiny amount.

16

Published as a conference paper at ICLR 2023

C QUANTITATIVE METRICS FOR 3D MESHES

We briefly explain the metrics we used for evaluating the quality of 3D Meshes.

Minimum Matching Distance (MMD). MMD measures the average distance to the nearest neighbor
of individual points in one point cloud to another point cloud.

Coverage. Suppose every point cloud in a set A is approximated by its nearest neighbor in another
set B. Coverage measures the fraction of elements in B which are used to cover A in the nearest
neighbor matching sense. Higher the coverage, Better that A is a representative set of B.

Leave-one-out Accuracy (1-NNA). As its name indicates, 1-NNA is the average leave-one-out
accuracy of the 1-NN classifier fitted on A to classify B. It measures if each element in the set A is
important in representing another set B. A low 1-NNA score means that A well covers B.

Jensen-Shannon Divergence (JSD). With JSD, we compute the distance between distribution of
ground truth point clouds and that of the generated point clouds: JSD(PA, PB) =

1
2KL(PA||M) +

1
2KL(PB ||M), in which M = 1

2 (PA + PB).

Light Field Distance (LFD). LFD leverages the so-called light field descriptor [8], which combines
local region-based and contour-based descriptors to measure the silhouettes and thus object shapes.

17

Published as a conference paper at ICLR 2023

D GENERATION SEQUENCE

For each time step t ∈ {1, ..., T} during the DDPM inference process, we can compute the predicted
x0 by the current value of xt [16]:

x̂0 =
1√
αt

(xt −
√
1− αtϵθ(x, t)),

in which ϵθ(x, t) is the learned denoising network, αt = Πt
s=1(1 − βs) and βt is the noise scale

hyperparameter in DDPM.

We show example generation trajectories in Figure 8 by visualizing the predicted x0 through time.
All x̂0’s are clipped to [0, 1]. We visualize the sequence from T = 250 to T = 50, as the predicted
tetrahedral grids before T = 250 produce nothing other than noise.

Figure 8: Generation sequences of predicted x0.

18

Published as a conference paper at ICLR 2023

E NEAREST NEIGHBOR VISUALIZATION

We show the nearest neighbors of some generated samples in the validation set in Figure 9.

Nearest Neighbor Nearest NeighborGenerated Generated Nearest NeighborGenerated Nearest NeighborGenerated

Figure 9: Nearest neighbor (from the ShapeNet dataset) of the generated samples.

19

Published as a conference paper at ICLR 2023

F QUALITATIVE COMPARISON TO GET3D

We visualize some generated meshes from MeshDiffusion and GET3D in Figure 10. Both models are
able to generate finer details of shapes due to the use of DMTet. On the car category of ShapeNet,
generated meshes by GET3D tend to have fewer or less noticeable holes, possibly because GET3D
is directly trained on adversarial losses on rendered images. In comparison, MeshDiffusion has to
learn the complex and often invisible 3D structures, which is also one of our advantages for modeling
complex 3D geometry with inner structures. However, potentially due to the limited capacity of
the decoder (compared to a recurrent U-Net in diffusion models) and the hardness of GAN training
(v.s. supervised learning with denoising loss), we observe that the failure cases appear more often in
GET3D compared to MeshDiffusion. And the novel examples in MeshDiffusion seem to make more
sense compared to those from GET3D.

GET3D

MeshDiffusion

Figure 10: Qualitative Comparison between MeshDiffusion and GET3D.

20

Published as a conference paper at ICLR 2023

G INNER STRUCTURE GENERATION

Since our MeshDiffusion is explicitly trained with 3D information, it is capable of generating
inner structures invisible from the outside. We give a comparison between samples generated by
MeshDiffusion (trained with a higher resolution of 128) and GET3D in Figure 11.

Figure 11: Inner structures of generated car meshes. Left: GET3D, Right: MeshDiffusion.

To fully evaluate the capability of surface generation (as GET3D is only trained to optimize surface
appearance), we follow the same procedure described in https://github.com/nv-tlabs/
GET3D/tree/master/evaluation_scripts and compare the point cloud metrics in Ta-
ble 5, with generated sample set 5x larger than the validation set.

Model
MMD (↓) COV (%, ↑)

CD EMD CD EMD

GET3D 9.8487 0.3668 42.93 54.20
MeshDiffusion 6.7965 0.3997 64.13 68.80

Table 5: Shape metrics of MeshDiffusion and GET3D on surface point clouds of generated car meshes.

21

https://github.com/nv-tlabs/GET3D/tree/master/evaluation_scripts
https://github.com/nv-tlabs/GET3D/tree/master/evaluation_scripts

Published as a conference paper at ICLR 2023

H MORE UNCONDITIONAL GENERATION SAMPLES

Figure 12: Generated 3D chair meshes.

22

Published as a conference paper at ICLR 2023

Figure 13: Generated 3D car meshes.

23

Published as a conference paper at ICLR 2023

Figure 14: Generated 3D airplane meshes.

24

Published as a conference paper at ICLR 2023

Figure 15: Generated 3D rifle meshes.

25

Published as a conference paper at ICLR 2023

Figure 16: Generated 3D table meshes.

26

